Opposing roles of the holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation.

نویسندگان

  • R S Harris
  • K J Ross
  • S M Rosenberg
چکیده

Aspects of the molecular mechanism of "adaptive" mutation are emerging from one experimental system: reversion of an Escherichia coli lac frameshift mutation carried on a conjugative plasmid. Homologous recombination is required and the mutations resemble polymerase errors. Reports implicating a role for conjugal transfer proteins suggested that the mutation mechanism is ordinary replication error occurring during transfer synthesis, followed by conjugation-like recombination, to capture the replicated fragment into an intact replicon. Whereas conjugational recombination uses either of two systems of Holliday junction resolution, we find that the adaptive lac reversions are inhibited by one resolution system and promoted by the other. Moreover, temporary absence of both resolution systems promotes mutation. These results imply that recombination intermediates themselves promote the mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Holliday junctions with Escherichia coli UvrD helicase.

The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA...

متن کامل

Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli.

Reversion of a lac- frameshift allele carried on an F' episome in Escherichia coli occurs at a high rate when the cells are placed under lactose selection. Unlike Lac+ mutations that arise during nonselective growth, the production of these adaptive mutations requires the RecA-RecBCD pathway for recombination. In this report, we show that enzymes that process recombination intermediates are inv...

متن کامل

RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration.

The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, ...

متن کامل

Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration.

The Escherichia coli ruvA and ruvB genes are involved in DNA repair and in the late step of homologous genetic recombination. We have demonstrated previously that the RuvA-RuvB protein complex in the presence of ATP promotes reabsorption of cruciform structures extruded from a supercoiled plasmid with an inverted repeat sequence. Because the cruciform structure is topologically analogous to the...

متن کامل

Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer.

In the major pathway of homologous DNA recombination in prokaryotic cells, the Holliday junction intermediate is processed through its association with RuvA, RuvB, and RuvC proteins. Specific binding of the RuvA tetramer to the Holliday junction is required for the RuvB motor protein to be loaded onto the junction DNA, and the RuvAB complex drives the ATP-dependent branch migration. We solved t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 1996